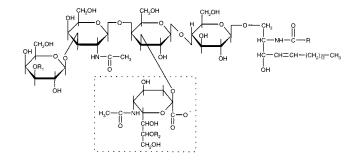
FTIR Study of the Monosialoganglioside GM_1 in Perdeuterated Dimyristoylglycerophosphocholine (DMPC_{d54}) Multilamellar Bilayers: Spectroscopic Evidence of a Significant Interaction between Ca^{2+} Ions and the Sialic Acid Moiety of GM_1^{\dagger}


Maroun Bou Khalil, Morris Kates, and Danielle Carrier*

Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada, K1H 8M5

Received October 5, 1999; Revised Manuscript Received January 6, 2000

ABSTRACT: Fourier transform infrared (FTIR) spectroscopy was employed to study bovine brain GM_1 and perdeuterated dimyristoylglycerophosphocholine (DMPC_{d54}) multilamellar dispersions (mole fractions of GM_1 in DMPC_{d54}: 0.12, 0.15, 0.19, 0.26, 0.34, 0.41, and 0.58), in the absence and presence of 10 mM $CaCl_2$. GM_1 micelles did not display a thermal phase transition in the temperature range 5–60 °C. Moreover, the ceramide moiety of GM_1 inserted into the hydrophobic core of DMPC_{d54} bilayers and was capable of undergoing a single, cooperative phase transition ($T_m = 22-28$ °C, depending on GM_1 content) in a bilayer system. This suggested that the mixed bilayers consisted of a homogeneous mixture and that GM_1 was uniformly dispersed in the bilayer plane rather than segregated into regions of relative enrichment. The coexistence of GM_1 and $DMPC_{d54}$ in a bilayer environment induced a rearrangement of the interfacial hydrogen bonding network of the amide I and ester C=O groups, relative to GM_1 micelles and $DMPC_{d54}$ bilayers, respectively. The modifications induced by GM_1 might ultimately modulate surface events such as lipid—lipid and/or lipid—protein interactions. The spectroscopic results also suggested that the glycolipid's headgroup surface location and conformation in bilayers allow GM_1 to act as a receptor for Ca^{2+} via its sialic acid moiety.

Gangliosides were first discovered by Klenk in 1930 (I). They were recognized as the major storage lipids in the brain of children with Tay-Sachs disease (2). Gangliosides (Figure 1) are a large family of acidic glycosphingolipids with a common neutral tetrasaccharide to which are bound sialic acid residues, providing a corresponding number of carboxylic acid groups (I, J). Brain tissue contains the highest concentrations (10 mol % of total lipids), with gangliosides GM_1^1 and GD_{1a} as the major species (J, J). They are located in the extracellular leaflet of the bilayer, and their concentration there is ca. 20 mol % (J). Gangliosides are believed to be involved in cell—cell/substratum interactions (J), modulation of transmembrane signaling (J-J), alteration of membrane fluidity (J0, J1), calcium homeostasis, and synaptic transmission (J2, J3). Many studies ascertained the capability

Ganglioside	\mathbf{R}_1	R_2
GM_1	Н	Н
GD _{ia}	NeuNAc	Н
GD_{1b}	н	NeuNAc
GT _{1b}	NeuNAc	NeuNAc

FIGURE 1: Chemical structures of the four major gangliosides (GM₁, GD_{1a}, GD_{1b}, and GT_{1b}) of mammalian brain, with the nomenclature of Svennerholm (1963). The gangliosides have a ceramide backbone and a common neutral tetrasaccharide portion (galactosyl β 1 \rightarrow 3 *N*-acetylgalactosaminyl β 1 \rightarrow 4 galactosyl β 1 \rightarrow 4 glucosyl) to which are bound sialic acid residues (structure in the dashed box with R₂ = H). NeuNAc, sialic acid; R, alkyl group.

of gangliosides to affect membrane protein activity (14–17). Cation fluxes through Na⁺ and Ca²⁺ plasma membrane channels appear to be modulated by gangliosides, particularly GM₁ (18, 19). Garcia and Miller (14) and Krifuks et al. (15)

[†] This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada to D.C.

^{*} To whom correspondence should be addressed at 451 Smyth Rd., Ottawa, Ontario, Canada, K1H 8M5. TEL: (613) 562-5800, ext 8215. FAX: (613) 562-5440. E-Mail: carrier@uottawa.ca.

¹ Abbreviations: AIDS, acquired immunodeficiency syndrome; CD₄, T-lymphocyte surface protein; DMPC, *sn*-1,2-dimyristoylglycero-3-phosphocholine; DMPC_{d54}, DMPC with perdeuterated acyl chains; DMPG, *sn*-1,2-dimyristoylglycero-3-phosphoglycerol; DPPC, *sn*-1,2-dipalmitoylglycero-3-phosphocholine; FAB MS, fast atom bombardment mass spectrometry; FTIR, Fourier transform infrared spectroscopy; GD_{xy}, disialogangliosides; GM_x, monosialogangliosides; GT_{xy}, trisialogangliosides; HIV, human immunodeficiency virus; NeuNAc, *N*-acetylneuraminic acid or sialic acid; PC, phosphatidylcholine; *T*_m, phase transition temperature; TLC, thin layer chromatography; *x*_g, mole fraction.

showed that GM₁ preferentially elicited the down-modulation of CD₄, the binding site of HIV (the aetiologic agent of AIDS), on the surface of T-lymphocytes (14, 15). Gangliosides are also implicated in receptor function; e.g., GM₁ acts as the receptor of the cholera toxin (20, 21) and is essential to the penetration of the toxin into the cell membrane (21).

Single crystal X-ray structure analysis revealed that the ceramide portion of gangliosides adopts a rigid conformation, with the two hydrocarbon chains packed closely together and oriented parallelly (10, 22, 23). In GM_1 , the region of the tetrasaccharide and the sialic acid defines an oxygen-rich surface suitable for interaction with water and cations (24). Abrahamsson and colleagues (1977) suggested that gangliosides tend to adopt a shovel conformation (25). However, data from the laboratories of many research groups suggested that gangliosides assume a linear conformation (26, 27).

Gangliosides in aqueous media exist in a micellar form above a critical micelle concentration of ca. 0.02 g/100 mL (28). Contrasted to this are the normal membrane lipids such as phosphatidylcholine (PC) which spontaneously form a lamellar structure in aqueous dispersions (2). Very little is known regarding the normal biological functions of gangliosides and their physical properties, partly because they are costly and difficult to synthesize. Therefore, a simple purification method was required before undertaking the investigation of the conformational and dynamic properties of these glycolipids. A modified procedure based on previously published methods was adopted for the present study (29-32). Infrared spectroscopy was used to examine the thermotropic profile of DMPC_{d54}/GM₁ bilayer systems (mole fractions of GM₁ in DMPC_{d54}: 0.12, 0.15, 0.19, 0.26, 0.34, 0.41, and 0.58). The concentration of GM_1 in the mixed DMPC_{d54}/GM₁ bilayers was increased to mimic physiological conditions associated with the accumulation of gangliosides in neurological disorders such as Tay-Sachs disease. Since gangliosides are involved in the regulation of Ca2+ homeostasis and synaptic transmission, we were also interested in determining whether this divalent cation interacts with the negatively charged sialic acid moiety of GM₁ (3, 4) and whether this interaction affects the hydrogen bonding of the interfacial region, the dynamics of the lipid hydrocarbon chains, and the phase behavior of the mixed DMPC_{d54}/GM₁ bilayers. We report the results of such studies using FTIR spectroscopy.

MATERIALS AND METHODS

Reagents. All chemicals used were of analytical quality and obtained from VWR Scientific of Canada Ltd.: MWCO 500 Spectra/Pro Cellulose Ester dialysis membrane (20 mm diameter), Diamond K6F silica gel precoated thin-layer plates (60 Å, 2.5 \times 7.5 cm, and 5.0 \times 10 cm, 250 μ m layer thickness), and silica gel (Kieselgel G, 230-400 mesh). DEAE-Sepharose CL-6B (mean particle size 90 μ m, particle size range $45-165 \mu m$ in wet form) was obtained from Pharmacia. Synthetic perdeuterated DMPC_{d54} was purchased from Avanti Polar Lipids and used without further purification for FTIR analysis. Gangliosides GM₁ and GT_{1b}, bought from Sigma Chemical Co., were used as standards for thin layer chromatography (TLC) analysis. Deuterated water was from MSD Isotopes (Montréal, Québec, Canada). Bovine brains were obtained from a local slaughterhouse (Ottawa, ON, Canada).

Isolation and Purification of Bovine Brain GM₁. The original method of Folch et al. (1957) (29), as modified by Svennerholm and Fredman (1980) (30), was used for the extraction of total lipids and the purification of gangliosides. Bovine brain tissue lipids and gangliosides were extracted with 20 volumes of CHCl₃/CH₃OH/water (4:8:3, v/v/v). The solvent composition was adjusted to 4:8:5.6 (v/v/v) for ganglioside partitioning. The lower chloroform phase was repartitioned by addition of 0.5 volume of methanol and 0.33 volume of 0.01 M potassium chloride. The crude gangliosides isolated from the upper water-enriched phase were freed from low molecular weight contaminants by dialysis against deionized water. The crude preparation contained sulfatides and various phospholipid contaminants. Bovine brain gangliosides were separated from the much larger quantity of neutral, zwitterionic, and acidic lipids (e.g., cholesterol, lecithin, ethanolamine phosphoglycerides, cerebrosides, neutral glycolipids, free fatty acids, sulfatides, serine, and inositol phosphoglycerides) by anion exchange chromatography as described by Fredman et al. (1980) (31) with the following modifications: DEAE-Sepharose (200 mL) was used for its high binding capacity and good separation, and monosialogangliosides were eluted with potassium acetate in methanol (0.02 M), instead of ammonium acetate, because the latter produces an acidic solution upon its removal by evaporation and induces a spontaneous hydrolysis of the sialic acid moiety in the oligosaccharide chain (31, 32). A subsequent, final step of silicic acid column chromatography (100 g) is then required to remove the contaminating acidic lipids and to ensure also the removal of small amounts of protein that may have survived the preceding treatment (31). Gangliosides were detected by TLC in CHCl₃/CH₃OH/0.20% CaCl₂ (60:40:9, v/v/v) (3) and stained with resorcinol (3, 33) and α -naphthol (34).

Preparation of Micellar Solutions and Multilamellar Bilayers. Suspensions of pure bovine brain GM₁ and dispersions of DMPC_{d54} and DMPC_{d54}/GM₁ (mole fractions of GM₁ in DMPC_{d54}: 0.12, 0.15, 0.19, 0.26, 0.34, 0.41, and 0.58) were prepared as follows: the lipids, dissolved in CHCl₃/ CH₃OH (2:1, v/v), were dried under a stream of nitrogen and left overnight under vacuum. Multilamellar dispersions (10% w/v) were prepared by vortex-mixing the dry lipids with the appropriate amounts of ²H₂O (p²H 7.5) or H₂O (pH 7.5) without Ca²⁺ or with 10 mM CaCl₂. At least four freeze (liquid nitrogen, -80 °C)/thaw (water bath, 80 °C) cycles were performed to ensure a homogeneous organization of the liposomes. GM₁ micelles (10% w/v) and DMPC_{d54} bilayers (10% w/v) were prepared in the same manner.

FTIR Spectroscopic Analysis. Samples for thermotropic studies were placed between two calcium fluoride windows separated by a 6 µm spacer. FTIR spectra were recorded on a Digilab FTS-40A spectrometer equipped with a liquid nitrogen cooled mercury—cadmium—telluride detector (MCT); measurements were made over 2-5 °C intervals in the range 5-60 °C, using a thermostated cell mount and variabletemperature water bath. For each spectrum, 256 interferograms were accumulated with a spectral resolution of 2 cm⁻¹. The instrument was purged continuously with dry air to eliminate spectral contributions from atmospheric water vapor. Fourier self-deconvolution of overlapping amide I $(1590-1660 \text{ cm}^{-1})$ and ester C=O $(1700-1760 \text{ cm}^{-1})$ bands was performed using the resolution enhancement procedure of Kauppinen et al. (1981) (*35*) with a bandwidth of 17 and a breakpoint of 1.5. Frequencies of the methylene symmetric C–H (2850–2855 cm⁻¹) and C–D (2089–2099 cm⁻¹), phosphate asymmetric (1160–1300 cm⁻¹), amide I, and ester C=O stretching vibrations were determined with the aid of the third-order Fourier derivative (*36*) with a power of 3 and a breakpoint of 0.3. The $T_{\rm m}$ values of the mixed DMPC_{d54}/GM₁ bilayers were estimated from the first-derivative plots of the methylene symmetric C–H (C–D) stretching vibration frequency vs temperature.

RESULTS

Characterization of GM₁. Thin-layer chromatography of the crude ganglioside extract in the solvent system CHCl₃/ CH₃OH/0.20% CaCl₂ (60:40:9, v/v) (3) and staining with resorcinol (3, 43) and α -naphthol (44) revealed the presence of GM₃, GM₂, GM₁, GD_{1a}, GD_{1b}, and GT_{1b}; the monosialoganglioside GM₁ and the disialogangliosides GD_{1a} and GD_{1b} being the major species (results not shown). The final purity of GM₁, isolated by the procedure of Folch et al. (1957) (39), as modified by Svennerholm and Fredman (1980) (40), was greater than 99% as judged by TLC $[R_f 0.49 \text{ reported value for human white and gray matter}]$ (3)]. Negative FAB mass spectra of underivatized bovine brain GM₁ (results not shown) revealed a major ion peak at m/z 1544 corresponding to the molecular ion $(M-H)^{-1}$, based on stearic acid (18:0) as the major acyl group. Ion peaks due to several fragments formed by cleavage at the glycosidic linkages from the nonreducing terminal were detected at m/z1382, formed by cleavage of the galactose residue from GM₁; m/z 1179, formed after cleavage of the N-acetylgalactosamine residue from the m/z 1382 fragment; m/z 888, formed after the sialic acid moiety was cleaved from the m/z 1179 fragment; and at m/z 282, corresponding to the major stearic acid moiety of GM₁. In addition, fragment ions pertaining to the minor fatty acids of GM_1 (16:0 > 15:0 > 18:2 \geq $20.4 > 20.0 \ge 16.1 > 14.1 > 14.0$) were also detected. The long-chain base consisted mainly of sphingosine 18:1 as indicated by the ion peak at m/z 281. The results reported here on the composition and heterogeneity of the fatty acyl groups of bovine brain GM1 are in agreement with those reported in the literature (3, 37-39).

The Interfacial Region of DMPC_{d54}/GM₁ Bilayers (Amide I and Ester C=O Groups). Amide groups of gangliosides (Figure 1) give rise to characteristic vibrational bands in their infrared spectra. The amide I band (1590–1660 cm⁻¹) originates from the C-O stretching vibration with a small contribution of the C-N stretching and N-H bending vibrations, while the amide II band (1500–1580 cm⁻¹) arises principally from the N-H bending and C-N stretching vibrations (40). The infrared spectra of GM₁ show complex patterns in the amide I absorption region due to the presence of three amide groups and a carboxylate group in the molecule. The deprotonated form of the carboxylate group of the sialic acid moiety absorbs in the frequency region of the amide I vibrational band (41). To simplify the spectrum, ²H₂O was used as a solvent for this study, since H/D exchange at the amide groups induces a shift of the amide II band to wavenumbers lower than 1500 cm^{-1} (41). In addition, the deformation mode of deuterated water is observed at ca. 1250 cm⁻¹ instead of 1640 cm⁻¹. With ²H₂O as a solvent, the amide I and ester carbonyl stretching bands

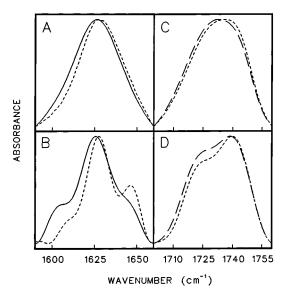


FIGURE 2: Amide I C=O stretching region of the infrared spectrum of a GM $_1$ micellar solution (solid line) and a DMPC $_{d54}$ /GM $_1$ dispersion (small dashes), before (A) and after (B) deconvolution. Ester C=O stretching region of the infrared spectrum of a dispersion of DMPC $_{d54}$ (long dashes) and DMPC $_{d54}$ /GM $_1$ (small dashes), before (C) and after (D) deconvolution. The spectra were autoscaled. The samples were prepared in 2H_2O (p 2H 7.5), and the DMPC $_{d54}$ /GM $_1$ dispersion had a GM $_1$ mole fraction of 0.26.

are thus the only vibrational modes left in the frequency range 1500–1800 cm⁻¹, together with the C=C stretching bands due to the chains unsaturations.

The amide I (1590-1660 cm⁻¹) and the ester carbonyl $(1700-1760 \text{ cm}^{-1})$ stretching modes of GM₁ and DMPC_{d54}, respectively, were examined to assess the degree of hydrogen bonding at the interfacial region (42, 43). In the mixed DMPC_{d54}/GM₁ bilayers, the amide I C=O band arising from GM₁ (Figure 2, panel A, small dashes) is found at 1630 cm⁻¹, as compared to 1625 cm⁻¹ for the GM₁ micellar suspensions (Figure 2, panel A, solid line). Upon deconvolution of the original spectra, the amide I absorption band of GM₁ micelles (Figure 2, panel B, solid line) is found to be the sum of three overlapping bands centered at 1640, 1625, and 1605 cm⁻¹. In the mixed DMPC_{d54}/GM₁ bilayer systems (panel B, small dashes), these three amide I constituent bands shifted to higher frequencies: 1645, 1630, and 1610 cm⁻¹. Therefore, the amide I component bands at 1625 cm⁻¹, for GM₁ micelles, and at 1630 cm⁻¹, for DMPC_{d54}/GM₁ bilayers, were assigned to the amide groups that are involved in hydrogen bonding, and the high-frequency constituent bands at 1640 cm⁻¹, for GM₁ micelles, and at 1645 cm⁻¹, for DMPC_{d54}/ GM₁ bilayers, were assigned to the ones that are less involved in hydrogen bonding at the interfacial region (44). Müller and Blume (1993) have shown that the third component band has too low a frequency to pertain to an amide I band, and they have assigned it to the CO₂⁻ group of the sialic acid moiety of GM_1 (41).

Similarly, the ester C=O band arising from DMPC_{d54} in the mixed bilayers (Figure 2, panel C, small dashes) shifted to a higher frequency, 1740 cm⁻¹, as compared to 1732 cm⁻¹ for the DMPC_{d54} dispersions (Figure 2, panel C, long dashes). In the infrared spectral region 1700–1760 cm⁻¹, the Fourier deconvolved spectra of DMPC_{d54} (Figure 2, panel D, long dashes) and of mixed DMPC_{d54}/GM₁ bilayers (Figure 2, panel D, small dashes) revealed overlapping bands at 1725 and

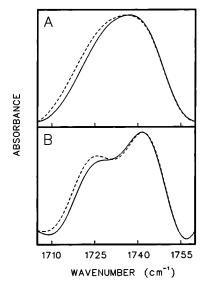


FIGURE 3: Ester C=O stretching region of the infrared spectrum of a DMPC_{d54}/GM₁ dispersion with a GM₁ mole fraction of 0.26 without Ca²⁺ (solid line) or with 10 mM CaCl₂ (small dashes) before (A) and after (B) deconvolution. The spectra were autoscaled. The samples were prepared in ${}^{2}\text{H}_{2}\text{O}$ (p²H 7.5).

1745 cm⁻¹, assigned to ester C=O groups involved and less involved in hydrogen bonding, respectively (44, 45). A decrease in the relative intensity of the 1725 cm⁻¹ component band (panel D, small dashes) was observed in the mixed bilayers, indicative of a reduction in the population of hydrogen bonded ester C=O groups of DMPC_{d54}. The observed shift to higher frequencies for the amide I and ester C=O vibrational modes indicates that the C=O groups at the interfacial zone of the mixed DMPC_{d54}/GM₁ bilayers display an increased double bond character and reduced hydrogen bonding (44, 45).

The effect of Ca²⁺ ions on the interfacial hydrogen bonding and the hydrocarbon chain dynamics of the mixed DMPC_{d54}/ GM₁ bilayers was also assessed by FTIR. The addition of Ca²⁺ ions to a DMPC_{d54}/GM₁ dispersion with a GM₁ mole fraction of 0.26 led to a frequency shift of the ester C=O absorption band from 1740 to 1730 cm⁻¹ (Figure 3, panel A). In the absence of Ca²⁺ and upon Fourier deconvolution (Figure 3, panel B, solid line), the DMPC_{d54}/GM₁ spectra revealed high- and low-frequency constituent bands centered at 1740 and 1725 cm⁻¹, respectively. In the presence of Ca²⁺ ions, the ester C=O component band at 1725 cm⁻¹ was observed at 1722 cm⁻¹ and increased in its relative intensity (Figure 3, panel B, small dashes). The shift of the ester C=O band to lower frequency suggests a strengthened hydrogen bonding network (44, 45) at the bilayer interfacial zone of the mixed DMPC_{d54}/GM₁ bilayers that could be due to a tightening of the lipidic network following neutralization by Ca²⁺ ions.

Interaction of Ca^{2+} with the Carboxylate Moiety of GM_1 and the Phosphate Moiety of DMPC $_{d54}$ in the Mixed Bilayers. The negatively charged gangliosides have the potential to bind cations on the cell surface, and this binding may be of importance in cell physiology. Ca²⁺ can bind to the sialic acid residue of GM₁ as well as to the phosphate group of DMPC_{d54}. Hayashi et al. (1984) observed that brain gangliosides in the micellar form were able to bind more Ca²⁺ ions (ca. 0.6 Ca²⁺ per ganglioside molecule) than the tested isolated phospholipid species (PS and PI) (46). In the absence

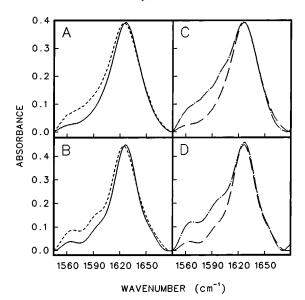


FIGURE 4: Carboxylate asymmetric and amide I C=O stretching region of the infrared spectra of a GM₁ micellar suspension without Ca²⁺ (solid line) or with 10 mM CaCl₂ (small dashes), before (A) and after (B) deconvolution, and of a $DMPC_{d54}\!/GM_1$ dispersion with a GM₁ mole fraction of 0.26 without Ca²⁺ (long dashes) or with the cation (dot-long dash), before (C) and after (D) deconvolution. The spectra were normalized with the integrated intensity of the methylene symmetric C-H stretching band. All the samples were prepared in ²H₂O (p²H 7.5) without or with 10 mM CaCl₂, as indicated.

of Ca²⁺, the region 1500-1800 cm⁻¹ of the infrared spectra of GM₁ micellar suspensions (Figure 4, panel A, solid line) and DMPC_{d54}/GM₁ dispersions with a GM₁ mole fraction of 0.26 (Figure 4, panel C, long dashes) reveal two major absorption bands: the amide I vibration band of GM₁ at 1625 cm⁻¹ and the carboxylate asymmetric stretching vibration band at 1560 cm⁻¹. In the presence of the divalent cation (Figure 4, panel A, small dashes), the amide I band of GM₁ micelles shifted to 1620 cm⁻¹, and the carboxylate band remained at ca. 1560 cm⁻¹ but changed significantly in its band shape and intensity. Deconvolution of the original spectra showed that each of these absorption bands is the sum of several overlapping bands (Figure 4, panels B and D). In the absence of Ca²⁺ ions, two component bands are observed at ca. 1560 and 1590 cm⁻¹ for the asymmetric carboxylate stretching band of GM₁ micelles (Figure 4, panel B, solid line) and in the mixed DMPC_{d54}/GM₁ bilayers (Figure 4, panel D, long dashes). In the presence of 10 mM CaCl₂, the two peaks changed in their relative intensity and band shape for GM₁ micelles (Figure 4, panel B, small dashes) and DMPC_{d54}/GM₁ bilayers (Figure 4, panel D, dotlong dash). On the other hand, the frequency of the asymmetric phosphate vibrational band of the phospholipid has shifted from 1230 cm⁻¹ (Figure 5, panel A, solid line) to 1231 cm⁻¹ (Figure 5, panel A, small dashes) for DMPC_{d54} dispersions and remained at ca. 1230 cm⁻¹ for DMPC_{d54}/ GM₁ bilayers (Figure 5, panel B) in the presence of the divalent cation. These Ca²⁺-induced changes of the phosphate band of DMPC_{d54} (Figure 5) are not as significant as the previously reported ones for dimyristoylglycerophosphoglycerol (DMPG): the asymmetric phosphate stretching band of DMPG shifted to lower frequencies by 2-8 cm⁻¹ in the presence of cationic molecules (47, 48).

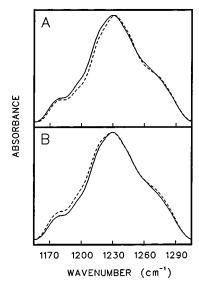


FIGURE 5: Phosphate asymmetric stretching region of the infrared spectrum of DMPC $_{d54}$ (panel A) and a DMPC $_{d54}$ /GM $_1$ dispersion with a GM $_1$ mole fraction of 0.26 (panel B) in H $_2$ O (pH 7.5) without Ca $^{2+}$ (solid line) or with 10 mM CaCl $_2$ (small dashes). The spectra were autoscaled.

The infrared data reported in this study indicate that Ca²⁺ ions interact with the negatively charged carboxylate group of the sialic acid residue of GM₁ to a much greater extent than with the phosphate moiety of DMPC_{d54}. Therefore, the fact that, upon Ca²⁺ binding, the asymmetric carboxylate vibrational band of GM₁ underwent dramatic changes in contrast to the slight spectral changes in the phosphate absorption band of DMPC_{d54} indicates that the divalent cation preferentially binds to the glycolipid even in the mixed DMPC_{d54}/GM₁ bilayers, neutralizing the negative charge of its carboxyl group and possibly cross-linking two GM₁ molecules in the bilayer plane.

Thermotropic Phase Behavior of Pure GM_1 and $DMPC_{d54}$. The temperature dependence of the frequency of the methylene symmetric C-H (ca. 2850 cm⁻¹) and C-D (ca. 2090 cm⁻¹) stretching bands allows us to monitor the dynamics of the lipidic chains. The maxima of these absorption bands are typically shifted by about 2-3 cm⁻¹ to higher wavenumbers at the lamellar gel to liquid-crystalline phase transition due to an increase of disorder or mobility of the acyl chains (41). The thermotropic profile of GM₁ micellar suspensions [110 mg/mL, well beyond the critical micelle concentration (0.02 g/mL)] exhibits no sign of a cooperative phase transition in the temperature range of 5–60 °C without Ca²⁺ (Figure 6, panel A, ■) or with 10 mM CaCl₂ (Figure 6, panel A, ●). There is a gradual increase in the frequency of the methylene symmetric C-H stretching vibration upon increasing temperature, with no discontinuity that could indicate a phase transition. This smooth thermotropic profile suggests that GM₁ was still in the micellar form, which is in agreement with the absence of transition in pure unsonicated suspensions of GM₁ (4 mg/mL) reported by Sillerud et al. (1979) (49) and in pure sonicated suspensions of GM₁ and GD_{1a} (15 mg/mL) reported by Hinz et al. (1981) (50). In contrast, the frequency of the acyl chains of DMPC_{d54} increased gradually upon raising the temperature from 5 to 60 °C, with a well-defined and cooperative phase transition centered at 19 °C (Figure 6, panel B, □) in the absence of Ca^{2+} ions, and at 21 °C (Figure 6, panel B, \bigcirc) in the presence

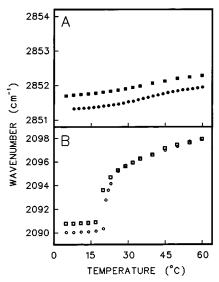


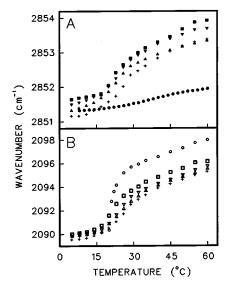
FIGURE 6: Temperature dependence of the symmetric C-H (panel A) and C-D (panel B) stretching vibrations of the methylene groups of GM₁ and DMPC_{d54}, respectively, before (\blacksquare and \Box) and after (\blacksquare and \bigcirc) the addition of Ca²⁺. (A) Temperature profile of GM₁ micellar suspensions in ${}^{2}\text{H}_{2}\text{O}$ (p²H 7.5) without Ca²⁺ (\blacksquare , n=4) or with 10 mM CaCl₂ (\blacksquare , n=4). (B) Temperature profile of DMPC_{d54} dispersions in ${}^{2}\text{H}_{2}\text{O}$ (p²H 7.5) without Ca²⁺ (\square , n=4) or with 10 mM CaCl₂ (\bigcirc , n=4).

of the divalent cation. The frequencies of the methylene symmetric C-H (v_s CH₂) and C-D (v_s CD₂) stretching vibration bands of GM₁ (Figure 6, panel A, \bullet) and DMPC_{d54} (Figure 6, panel B, \bigcirc), respectively, are lowered in the presence of Ca²⁺, indicating that the divalent cation exerts an ordering effect on the acyl chains of GM₁ micelles and on those of DMPC_{d54} bilayers in the gel phase.

Measurements on the Mixed DMPC_{d54}/GM₁ Bilayers. Synthetic DMPC_{d54} was used as a host phospholipid. The use of perdeuterated acyl chains provides a useful means to circumvent problems associated with interferences from the CH₂ symmetric (2850 cm⁻¹) stretching vibrations by GM₁. FTIR measurements were made on the following mole fractions of GM₁ in DMPC_{d54}: 0.12, 0.15, 0.19, 0.26, 0.34, 0.41, and 0.58. The influence of GM₁ on the phase behavior of DMPC_{d54} can be monitored by following the frequency of the CD₂ symmetric stretching vibrational band at ca. 2090 cm^{-1} as a function of temperature. The addition of GM_1 to DMPC_{d54} bilayers leads to increased gel/liquid-crystalline phase transition temperatures with increasing ganglioside content (Table 1). While the thermotropic profile of pure DMPC_{d54}/Ca²⁺ vesicles reveals a single, sharp transition at ca. 21 °C (Figure 7, panels B and D, O), DMPC_{d54} dispersions containing GM₁ and Ca²⁺ exhibit a single, smooth transition between ca. 22 and 28 °C, depending on the GM₁ concentration. In the mixed $DMPC_{d54}/GM_1$ bilayers, the thermotropic profiles of the hydrocarbon chains of GM₁ and of the perdeuterated acyl chains of DMPC_{d54} were similar, and the gel/liquid-crystalline transition temperatures were identical (±0.3 °C) for the methylene C-H (2850 cm⁻¹) (Figure 7, panels A and C) and C-D (2090 cm⁻¹) (Figure 7, panels B and D) symmetric stretching vibrations. For GM₁ molar fractions of 0.12 (Figure 7, \blacksquare and \square), the orderdisorder $T_{\rm m}$ for DMPC_{d54}/GM₁ dispersions was 22 °C. The gel to liquid-crystalline phase transition for the mixed bilayers was 26 °C for GM₁ molar fractions of 0.26 (Figure 7, ▼ and

Table 1: Gel to Liquid-Crystalline Transition Temperature of Dispersions of DMPC $_{\rm d54}$ and DMPC $_{\rm d54}/GM_1/Ca^{2+~\alpha}$

DMPC _{d54} /	GM ₁ mole	transition temperature (±1 °C)	
GM ₁ molar ratio	fraction	DMPC _{d54}	GM_1
1:0	_	21	_
0:1	_	_	no transition
1:0.07	0.12	22	22
1:0.08	0.15	23	23
1:0.11	0.19	25	25
1:0.17	0.26	26	26
1:0.25	0.34	26	26
1:0.33	0.41	28	28
1:0.66	0.58	28	28


 a The transition temperatures (the average of 4 repeats for each experiment in the temperature range 5–60 °C) were obtained from the CD $_2$ (DMPC $_{\rm d54}$) and CH $_2$ (GM $_1$) symmetric stretching vibrations in the infrared spectra. The GM $_1$ micellar suspensions as well as the DMPC $_{\rm d54}$ and DMPC $_{\rm d54}/{\rm GM}_1$ dispersions were prepared in $^2{\rm H}_2{\rm O}$ (p $^2{\rm H}$ 7.5) with 10 mM CaCl $_2$.

 ∇) and 0.34 (Figure 7, ▲ and △). At high ganglioside concentration, the phase transition temperature of DMPC_{d54}/GM₁ dispersions stayed at 28 °C from a GM₁ molar fraction of 0.41 (Figure 7, +) to 0.58 (Table 1). A characteristic feature of the DMPC_{d54}/GM₁ mixtures (Figure 7) is the presence of a single and cooperative transition, suggesting that the two lipids were completely miscible, at all GM₁ concentrations, in both the gel and the liquid-crystalline phase. Our results are in agreement with those of Müller and colleagues (1993, 1996) (41, 51).

The effect of Ca²⁺ on the phase behavior of the mixed DMPC_{d54}/GM₁ bilayers (GM₁ $x_g = 0.26$) is shown in Figure 8. The order-disorder $T_{\rm m}$ of the hydrocarbon chains of the glycolipid (panel A, \times) and of the perdeuterated acyl chains of the phospholipid (panel B, ×) is 23 °C in the absence of Ca²⁺. The divalent cation induced a shift of the transition temperature to 26 °C, suggesting a reduction of the mobility and disorder of the acyl chains of GM_1 (panel A, ∇) and DMPC_{d54} (panel B, ∇) and thus a stabilization of the mixed bilayers. The v_s CH₂ of GM₁ (Figure 8, panel A, \blacktriangledown) and v_s - CD_2 of $DMPC_{d54}$ (Figure 8, panel B, ∇) are lowered in the presence of Ca²⁺, indicating that the mixed bilayers contained fewer gauche conformers and that the acyl chains were packed tightly in the hydrophobic core of the DMPC_{d54} bilayer. Similarly, the Ca^{2+} -induced shift of the $T_{\rm m}$ to higher temperatures was also pronounced for the mixed DMPC_{d54}/ GM_1 bilayers ($GM_1 x_g = 0.34$), where the T_m increased from 24 to 26 °C (results not shown). Therefore, the ordering effect of GM₁ on DMPC_{d54} bilayers is enhanced by the presence of Ca²⁺ ions.

DISCUSSION

The main purpose of the present spectroscopic investigation was to elucidate the biochemical significance of GM_1 in a $DMPC_{d54}$ bilayer environment. We were also interested in examining the effect of GM_1 on the phase behavior of $DMPC_{d54}$ and in studying the interaction of the glycolipid with Ca^{2+} ions to shed some light on its involvement in the regulation of synaptic transmission. GM_1 is an amphiphilic molecule present on the outer leaflet of the plasma membrane, and it is plausible that this glycolipid, along with other negatively charged lipids comprised in the interfacial region of the bilayer, may serve as an anionic site to trap Ca^{2+} and

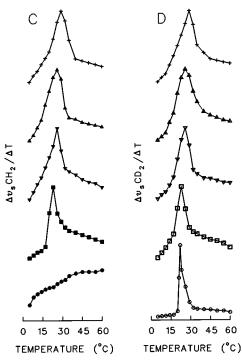


FIGURE 7: (A) Temperature dependence of the methylene symmetric C-H stretching vibration of GM₁ micellar suspensions (\bullet) and DMPC_{d54}/GM₁ mixtures with GM₁ mole fractions of 0.12 (\blacksquare), 0.26 (\blacktriangledown), 0.34 (\blacktriangle), and 0.41 (+). (B) Temperature dependence of the methylene symmetric C-D stretching vibration of DMPC_{d54} dispersions (\bigcirc) and DMPC_{d54}/GM₁ mixtures with GM₁ mole fractions of 0.12 (\square), 0.26 (\triangledown), 0.34 (\triangle), and 0.41 (+). (C) First-derivative plots of the curves shown in panel A. (D) First-derivative plots of the curves shown in panel B. All the samples were prepared in 2 H₂O (2 H 7.5) with 10 mM CaCl₂.

other cations of biological significance. The ceramide moiety of bovine brain GM_1 , used throughout this study, is a mixture of fatty acid molecular species with different hydrocarbon chain lengths, stearic acid being the major species (3, 37–39). The fluidity of the hydrophobic core of GM_1 micelles increased gradually with temperature, but no thermal phase transition was observed by FTIR spectroscopy (Figure 6). Hirai and Takizawa (1998) reported that the elevation of temperature (from 6 to 60 °C) induced a significant shrinkage of the hydrophilic region of the ganglioside micellar suspen-

FIGURE 8: Temperature dependence of the symmetric C-H (panel A) and C-D (panel B) stretching vibrations of the methylene groups of GM₁ and DMPC_{d54}, respectively, before and after the addition of Ca²⁺. (A) Temperature profile of a DMPC_{d54}/GM₁ dispersion with a GM₁ mole fraction of 0.26 in 2 H₂O (p²H 7.5) without Ca²⁺ (×, n = 4) or with 10 mM CaCl₂ (\blacktriangledown , n = 4). (B) Temperature profile of a DMPC_{d54}/GM₁ dispersion with a GM₁ mole fraction of 0.26 in 2 H₂O (p²H 7.5) without Ca²⁺ (×, n = 4) or with 10 mM CaCl₂ (\triangledown , n = 4).

sions. The authors concluded that gangliosides can act like a water cavity, reversibly entrapping or releasing large amounts of water and thus modulating the local hydrophobicity of the cell surface (52). On the other hand, DMPC_{d54} forms bilayers in aqueous dispersions. The gel to liquid-crystalline phase transition of DMPC_{d54} was centered at 19 $^{\circ}$ C without Ca²⁺ and at 21 $^{\circ}$ C with 10 mM CaCl₂, suggesting that the divalent cation had an ordering effect on the hydrocarbon region of the bilayer.

The interactions that GM₁ can establish with synthetic DMPC_{d54} should provide a better understanding in molecular terms of the ability of the glycolipid to induce changes in membrane permeability and stability. In the mixed DMPC_{d54}/ GM₁ bilayer systems with varying GM₁ molar fractions, the hydrocarbon chains of GM₁ exhibited a phase transition with an order-disorder $T_{\rm m}$ identical (± 0.3 °C) to that of the perdeuterated acyl chains of DMPC_{d54} and occurring at a higher temperature than in pure DMPC_{d54} dispersions. This indicated that GM₁ was incorporated into DMPC_{d54} bilayers and was capable of undergoing a phase transition in a lipid bilayer environment. It was suggested earlier that such thermal phase transitions of glycolipids may be influenced by rearrangements of their large polar headgroups (53). The presence of a single, cooperative phase transition is consistent with homogeneous mixing of DMPC_{d54} and GM₁ within the mixed bilayers, without lateral phase segregation. The addition of GM₁ to DMPC_{d54} bilayers increased the transition temperature of the phospholipid, with the acyl chains becoming motionally restricted relative to DMPC_{d54}. Ca²⁺ ions further enhanced the ordering effect of the glycolipid on the hydrocarbon chains of DMPC $_{d54}$.

Since the ceramide moiety of GM₁ comprises fatty acyl chains longer than the perdeuterated myristoyl chain of DMPC_{d54}, its insertion into the bilayer hydrophobic core affects the packing of the perdeuterated hydrocarbon chains.

Dahlen and Pascher (1979) have suggested that the sphingosine chain of glycosphingolipids penetrates into the bilayer by only 14 carbons (54). Boggs and Koshy (1994) have suggested that the carbohydrate headgroup of cerebroside sulfate (CBS) protrudes above the surface of PC bilayers, allowing the sulfoglycolipid to be recognized by various carbohydrate binding ligands and proteins (55). Both GM₁ ganglioside and DMPC_{d54} can probably bind or at least interact with divalent cations such as Ca2+. Whether the binding affinity of Ca²⁺ toward GM₁ is greater than to DMPC_{d54} was still unclear. Our results show that the divalent cation induces important changes of the GM₁ sialic acid carboxylate band in the mixed DMPC_{d54}/GM₁ bilayers, suggesting a direct interaction, whereas the DMPC_{d54} phosphate band is not affected significantly. Based on the interpretations of Dahlen and Pascher (1979) and Boggs and Koshy (1994), we concluded that the carbohydrate headgroup of GM₁ protrudes out of the DMPC_{d54} bilayer surface, allowing a better binding of Ca²⁺ ions to the glycolipid than to the phospholipid (54, 55).

Müller and colleagues (1993, 1996) conducted a series of FTIR studies on DMPC/GM₁ bilayers and concluded that the affinity of Ca²⁺ ions toward the phosphate moiety of DMPC is greater than to the sialic acid moiety of GM₁ (41, 51). They reported that the band shape and relative intensity of the asymmetric carboxylate stretching band of GM₁ in the infrared spectrum did not change in the mixed DMPC/GM₁ bilayers (5:1, mol/mol) when the divalent cation was present. The surface location and the conformation of the headgroup region of gangliosides govern their ability to interact with ions and carbohydrate binding ligands. The unique surface position of the headgroup region of GM1 is determined by the fatty acid chains of the ceramide backbone of the glycolipid. The contradictory results presented by Müller and colleagues (1993, 1996) (41, 51) may be attributed to the use of different fatty acid chain lengths, to the different degree of saturation of the GM₁ acyl chains, and to the conformation of the oligosaccharide moiety, which would ultimately affect the surface location of the glycolipid and its interaction with various ligands, specifically Ca²⁺

The changes in the amide I and ester C=O absorption bands in the mixed DMPC_{d54}/GM₁ bilayers revealed that hydrogen bonding was disrupted in the absence of Ca²⁺ ions, as compared to GM₁ micelles and DMPC_{d54} bilayers. The perfect mixing of GM₁ and DMPC_{d54} impedes hydrogen bonding between the glycolipid molecules. On the other hand, GM₁ gives a tighter bilayer, decreasing the accessibility of water molecules to DMPC_{d54} and GM₁ in the mixed bilayers. Therefore, the most likely interaction is then between the two types of lipids. The complex formation of Ca²⁺ with GM₁ in the mixed bilayers increased hydrogen bonding: the neutralization of the negatively charged sialic acid residues of GM₁ by interaction with Ca²⁺ affects the orientation of the sialic acid residue at the interfacial zone (56) of DMPC_{d54} bilayers, which would ultimately influence the molecular packing of the acyl chains in the bilayer. These modifications in the headgroup region of GM₁ modify hydration at the interface, leading to increased hydrophobic chain interactions and intermolecular cohesion, which brings the oligosaccharide moiety of GM₁ and the headgroup of $\ensuremath{\mathsf{DMPC}}_{\ensuremath{\mathsf{d}54}}$ closer and, thus, strengthens the hydrogen bonding network.

The following model was suggested for the implication of GM₁ in synaptic transmission and Ca²⁺ homeostasis at the presynaptic membrane. The negatively charged sialic acid residues of GM₁ bind Ca²⁺ (12, 46, 57), and the synaptic membrane is tightened or rigidified. The stabilizing effect of Ca²⁺ on the lipid bilayer is most likely attributed to intermolecular bridging effects of Ca²⁺ (56). When an action potential arrives at the synapse, Ca²⁺ is displaced from the gangliosides and the hydrogen bonding network is disrupted, thus increasing the fluidity of the plasma membrane and inducing increased permeability for the divalent cation. The entry of calcium to the intracellular space could be facilitated via ganglioside-modulated ion channels. The transmitter is released, and Ca2+ is pumped out of the neuroplasm by means of ganglioside-modulated membrane proteins. The divalent cation then rebinds to gangliosides, which induces a retightening of the membrane for a new transmission cycle (12-14).

In summary, membrane ganglioside concentration is typically low, and these molecules are most likely randomly distributed in the bilayer plane, notably because they are anionic and would be expected to repulse each other. The results reported here clearly show that GM₁ is incorporated and molecularly dispersed in the mixed DMPC_{d54}/GM₁ bilayers, without lateral phase separation of the lipid components. Furthermore, GM₁-bound Ca²⁺ ions and GM₁/ Ca²⁺ interactions were more pronounced than those of DMPC_{d54}/Ca²⁺. The evidence of ganglioside implication in receptor modulation and general cell physiology is rapidly accumulating: GM₁ may act as a receptor for extracellular signals, specifically Ca2+ ions, and take part in dynamic membrane functions (e.g., synaptic transmission) by undergoing phase transition in a lipid bilayer environment, by causing protein and/or lipid conformational changes within the bilayer via hydrogen bonding, and by acting as a water cavity (54) to modulate the local hydrophobicity of cell surface and events such as cell-cell and cell-protein interactions (14-19).

REFERENCES

- Kanfer, J. N., and Hakomori, S. (1983) Sphingolipid Biochemistry. in *Handbook of Lipid Research* (Hanahan, D. J., Ed.) pp 89–165, 283–284, Plenum Press, New York.
- 2. Hill, M. W., and Lester, R. (1953) *Biochim. Biophys. Acta* 282, 18–30.
- 3. Ledeen, R. W., and Yu, R. K. (1982) *Methods Enzymol.* 83, 139–191.
- 4. Urban, P. F., Harth, S., Freysz, L., and Dreyfus, H. (1979) *Adv. Exp. Med. Biol. 125*, 149–157.
- 5. Felgner, P. L., Freire, E., Barenholz, Y., and Thompson, T. E. (1981) *Biochemistry* 20, 2168–2172.
- 6. Kalueff, A. V. (1996) Ukr. Biokhim. Z. 68, 15-19.
- 7. Nagai, Y. (1995) Behav. Brain Res. 66, 99-104.
- 8. Hakomori, S. (1996) Adv. Pharmacol. 36, 155-171.
- 9. Tsuji, S., Kojima, N., and Hitoshi, S. (1996) J. Lipid Mediators Cell Signalling 14, 289—294.
- 10. Pascher, I. (1976) Biochim. Biophys. Acta 455, 433-451.
- Bertoli, E., Masserini, M., Sonnino, S., Ghidoni, R., Cestaro, B., and Tettamanti, G. (1981) *Biochim. Biophys. Acta* 647, 196–202.

- Probst, W., Möbius, D., and Rahmann, H. (1984) Cell. Mol. Neurobiol. 4, 157–176.
- 13. Rahmann, H., Jonas, U., Kappel, T., and Hildebbrandt, H. (1998) *Ann. N.Y. Acad. Sci.* 845, 73–91.
- 14. Garcia, J. V., and Miller, A. D. (1991) *Nature 350*, 508-511.
- Krifuks, O., Bergelson, L. D., and Schlesinger, M. (1998) *Cell. Immunol.* 187, 45–51.
- Tiemeyer, M., Yasuda, Y., and Schnaar, R. L. (1990) J. Biol. Chem. 264, 1671–1681.
- Higashi, H., Omori, A., and Yamagata, T. (1992) J. Biol. Chem. 267, 9831–9838.
- Slenzka, K., Appel, R., and Rahmann, H. (1990) Neurochem. Int. 17, 609-614.
- Hilbush, B. S., and Levine, S. M. (1992) J. Biol. Chem. 267, 24789–24795.
- Dixon, S., Stewart, D., Grinstein, S., and Spiegel, S. (1987)
 J. Cell Biol. 105, 1153-1161.
- 21. Fishman, P. H. (1982) J. Membr. Biol. 69, 85-97.
- 22. Harris, P. L., and Thornton, E. R. (1978) *J. Am. Chem. Soc.* 100, 6738–6745.
- 23. Pascher, I., Lundmark, M., Nyholm, P. G., and Sundell, S. (1992) *Biochim. Biophys. Acta 1113*, 339–373.
- Koerner, T. A. W., Prestegard, J. H., Demou, P. C., and Yu, R. K. (1983) *Biochemistry* 22, 2676–2687.
- 25. Abrahamsson, S., Dahlen, B., Lofgren, H., Pascher, J., and Sandell, S. (1977) Structure of Biological Membranes. in *The Structure of Biological Membranes* (Abrahamsson, S., and Pascher, J., Eds.) pp 1–23, Plenum Press, New York.
- McDaniel, R. V., McLaughlin, A., Winiski, A. P., Eisenberg, M., and McLaughlin, S. (1984) *Biochemistry* 23, 1618–1624.
- 27. Wynn, C. G., and Robson, B. (1986) *J. Theor. Biol. 123*, 221–230.
- 28. Gammack, D. B. (1963) Biochem. J. 88, 373-383.
- Folch, J., Lees, M., and Sloane-Stanley, G. H. (1957) J. Biol. Chem. 226, 497–509.
- 30. Svennerholm, L., and Fredman, P. (1980) *Biochim. Biophys. Acta 617*, 97–109.
- 31. Fredman, P., Nilsson O., Tayot, J. L., and Svennerholm, L. (1980) *Biochim. Biophys. Acta* 618, 42-52.
- 32. Iwamori, M., and Nagai, Y. (1978) *Biochim. Biophys. Acta* 528, 257–267.
- 33. Svennerholm, L. (1957) Biochim. Biophys. Acta 24, 604-611.
- 34. Kates, M. (1986) Technique of Lipidology: Isolation, Analysis and Identification of Lipids. in *Techniques in Biochemistry* and Molecular Biology (Burdon, R. H., and Knippenberg, P. H., Eds.) pp 100–278, Elsevier, New York.
- Kauppinen, J. K., Moffatt, D. J., Mantsch, H. H., and Cameron,
 D. G. (1981) *Appl. Spectrosc.* 35, 271–276.
- Cameron, D. G., and Moffatt, D. J. (1987) Appl. Spectrosc. 41, 539–544.
- Kadowaki, H., Evans, J. E., and McCluer, R. H. (1984) J. Lipid Res. 25, 1132–1139.
- Maggio, B., Albert, J., and Yu, R. K. (1988) Biochim. Biophys. Acta 945, 145–160.
- 39. Sonnino, S., Cantù, L., Corti, M., Acquotti, D., and Venerando, B. (1994) *Chem. Phys. Lipids* 71, 21–45.
- 40. Menikh, A., Nyholm, P. G., and Boggs, J. M. (1997) *Biochemistry 36*, 3438–3447.
- 41. Müller, E., and Blume, A. (1993) *Biochim. Biophys. Acta 1146*,
- Attar, M., Wong, P. T. T., Kates, M., Carrier, D., Jaklis, P., and Tanphaichitr, N. (1998) *Chem. Phys. Lipids* 94, 227– 238.
- Nabet, A., Boggs, J. M., and Pézolet, M. (1996) *Biochemistry* 35, 6674–6683.
- 44. Wong, P. T. T., and Mantsch, H. H. (1988) *Chem. Phys. Lipids* 46, 213–224.
- Blume, A., Hübner, W., and Messner, G. (1988) *Biochemistry* 27, 8239–8249.
- 46. Hayashi, K., Mühleisen, M., Probst, W., and Rahmann, H. (1984) *Chem. Phys. Lipids* 34, 317–322.
- 47. Carrier, D., Chartrand, N., and Mattar, W. (1997) *Biochem. Pharmacol.* 53, 401–408.

- 48. Gurnani, K., Khouri, H., Couture, M., Bergeron, M. G., Beauchamp, D., and Carrier, D. (1995) *Biochim. Biophys. Acta* 1237, 86–94.
- Sillerud, L. O., Schafer, D. E., Yu, R. K., and Königsberg, W. H. (1979) J. Biol. Chem. 254, 10876–10880.
- Hinz, H. J., Körner, O., and Nicolau, C. (1981) *Biochim. Biophys. Acta* 643, 557–571.
- 51. Müller, E., Giehl, A., Schwarzmann, G., Sandhoff, C., and Blume, A. (1996) *Biophys. J. 71*, 1400–1421.
- Hirai, M., and Takizawa, T. (1998) Biophys. J. 74, 3010– 3014.
- 53. Baret, J. F., Bois, A. G., Dupin, J. J., and Firpo, J. L. (1982) J. Colloid Interface Sci. 86, 370–376.

- 54. Dahlen, B., and Pascher, I. (1979) *Chem. Phys. Lipids* 24, 119-133.
- 55. Boggs, J. M., and Koshy, K. M. (1994) *Biochim. Biophys. Acta 1189*, 233–241.
- Maggio, B., Cumar, F. A., and Caputto, R. (1980) *Biochem. J.* 189, 435–440.
- 57. Jacques, L. W., Riesco, B. F., and Weltner, W. (1980) *Carbohydr. Res.* 83, 21–32.
- Sharom, F. J., and Grant, C. W. M. (1978) *Biochim. Biophys. Acta* 507, 280–293.
- 59. Svennerholm, L. (1963) J. Neurochem. 10, 613-623.

BI9923104